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In order to study the roles of stress anisotropy and of elasticity in the mechanism
of drag reduction by polymer additives we investigate a turbulent pipe flow of a
dilute polymer solution. The investigation is carried out by means of direct numerical
simulation (DNS) and laser Doppler velocimetry (LDV). In our DNS two different
models are used to describe the effects of polymers on the flow. The first is a
constitutive equation based on Batchelor’s theory of elongated particles suspended
in a Newtonian solvent which models the viscous anisotropic effects caused by the
polymer orientation. The second is an extension of the first model with an elastic
component, and can be interpreted as an anisotropic Maxwell model. The LDV
experiments have been carried out in a recirculating pipe flow facility in which we
have used a solution of water and 20 w.p.p.m. Superfloc A110. Turbulence statistics
up to the fourth moment, as well as power spectra of various velocity components,
have been measured. The results of the drag-reduced flow are first compared with
those of a standard turbulent pipe flow of water at the same friction velocity at a
Reynolds number of Reτ ≈ 1035. Next the results of the numerical simulation and
of the measurements are compared in order to elucidate the role of polymers in the
phenomenon of drag reduction. For the case of the viscous anisotropic polymer model,
almost all turbulence statistics and power spectra calculated agree in a qualitative
sense with the measurements. The addition of elastic effects, on the other hand, has
an adverse effect on the drag reduction, i.e. the viscoelastic polymer model shows less
drag reduction than the anisotropic model without elasticity. Moreover, for the case
of the viscoelastic model not all turbulence statistics show the right behaviour. On
the basis of these results, we propose that the viscous anisotropic stresses introduced
by extended polymers play a key role in the mechanism of drag reduction by polymer
additives.

1. Introduction
The addition of a minute amount of polymer to a turbulent Newtonian fluid flow

can result in a large reduction of the frictional drag in pipes and channels. Although
this effect has been known for almost half a century, the physical mechanism that
causes this drag reduction has still not been clearly identified. Apart from the
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obvious practical applications, the phenomenon of drag reduction is also interesting
from a fundamental point of view. Namely, the fact that small changes in fluid
composition can so drastically alter the turbulent flow characteristics strongly hints
that the polymer interferes with an essential mechanism of turbulent transport. That
means that a study of polymeric drag reduction could help in gaining more insight
into turbulence itself.

During the past three decades, a vast number of experimental papers have appeared
on polymeric drag reduction, in particular in pipes and channels. Let us briefly review
some of these experimental investigations. Among the recent studies are for example
the contributions of Pinho & Whitelaw (1990), Harder & Tiederman (1991) and
Wei & Willmarth (1992). These investigations have in common that they make use
of laser Doppler velocimetry (LDV) to measure the turbulence statistics. Pinho &
Whitelaw (1990) measure all three velocity components in a pipe flow, while the other
two studies use a two-dimensional LDV system in a channel flow. Wei & Willmarth
(1992) give special attention to the power spectra. One of the most striking results
found in these papers, and also in the majority of other studies reported in the
literature, is that polymer additives do not simply suppress the turbulent motion. On
the contrary, the streamwise turbulence intensity is for example increased, while the
normal turbulence intensity is decreased. This means that the turbulence structure
is changed, rather than attenuated. Wei & Willmarth (1992) find that the energy in
the normal velocity component is dramatically suppressed over all frequencies, while
there is a redistribution of energy from high frequencies to low frequencies for the
streamwise component. More experimental results reported in the literature will be
discussed in §7. For an overview and more details the reader is referred to Tiederman
(1990).

In spite of the large amount of observational data available, the mechanism of drag
reduction by polymers still remains unclear. Therefore, another approach is called for.
In our case, this is direct numerical simulation (DNS), which we use to obtain more
insight into the mechanism of polymeric drag reduction in a rational way. Contrary
to what is possible in experiments, one can try in numerical simulations to isolate
certain properties of the polymer by using a specific constitutive equation, and to
study in detail the effects that these properties have on the flow. In this way, the
importance of these isolated properties for the phenomenon of drag reduction can be
estimated, at least qualitatively.

The suitability of DNS for such a purpose has already been made clear in a previous
paper (den Toonder, Nieuwstadt & Kuiken 1995b) where the role of extensional
viscosity in the mechanism of drag reduction by polymer additives was investigated.
The aim of that paper was to test a hypothesis introduced by Lumley (1969), who
was the first to suggest that the molecular extension of polymers is responsible for
drag reduction. Lumley argued that this extension will take place in the flow outside
the viscous sublayer, causing an increase in effective viscosity there. Using general
scaling arguments, Lumley showed that then a reduction in overall drag will occur.
Den Toonder et al. (1995b) presented the results of a DNS with a simplified polymer
extension criterion to increase the viscosity locally. It was found that a mere increase
in effective viscosity outside the viscous sublayer is in itself not enough to produce
significant drag reduction, so that Lumley’s hypothesis should perhaps be made more
specific. In particular we note that neither Lumley’s hypothesis, although based on the
notion of polymer extension, nor the rather simple model used in den Toonder et al.
(1995b) contains any anisotropic stress effects caused by specific polymer orientations.

In the present paper, the numerical simulations started by den Toonder et al. (1995b)
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are taken several steps further by incorporating anisotropic and elastic effects. That
anisotropy might be important was suggested by the experiments performed by Virk
& Wagger (1990). They studied the relation between the friction and the flow rate of
polymer solutions in a turbulent pipe flow. The initial conformation of the polymers
could be varied from extended to coiled by adding salt to the solvent. The result led
to a higher drag reduction for the extended polymers, while at the same time the drag
reduction onset Reynolds number† was found to be lower. This result suggests that
the polymers are only effective when they take an elongated shape, like a rod or an
extended thread, thereby introducing anisotropic effects in the fluid.

A theoretical study that supports the idea of anisotropy due to the extended
polymers is given by Landahl (1973). He investigated the influence of different
constitutive models on the stability of a conceptually simple turbulent flow model.
The calculations performed with a Maxwell fluid model show destabilization of the
flow for moderate amounts of elasticity. This is confirmed by the recent computations
of Draad & Hulsen (1995). In the case of a Batchelor–Hinch model for rigid rods
aligned in the mean-flow direction Landahl found a strong stabilizing effect. This
led him to the conclusion that for polymeric drag reduction the anisotropic stress
caused by the extension of the polymeric coils seems to be a key property, rather
than viscoelasticity.

Recent experiments by Sasaki (1991a, b, 1992), who measured the effectiveness for
drag reduction of various polymers in combination with several kinds of solvents,
also suggest that the existence of rod-like entities in the solution which introduce
anisotropic effects is essential. Moreover, he found that the drag-reducing ability
of polymer solutions tends to decrease when the polymers become more flexible,
which is also in accordance with Landahl (1973). Finally, we should mention that
the possibility of drag reduction as being an anisotropic response of the flow to
an anisotropic viscosity induced by elongated polymers has been also suggested by
Hinch (1977).

On the other hand, de Gennes (1990) and Joseph (1990) suggest quite another
mechanism to explain drag reduction by polymers. They maintain that it is elasticity
which is responsible. A polymer solution, even a very dilute one, can be regarded
as a viscoelastic fluid. In these fluids the viscosity takes care of diffusion and of
the smoothing of shear discontinuities (‘shear waves’), while on the other hand the
elasticity is able to propagate these shear discontinuities. Moreover, in purely viscous
fluids, the stress is always in phase with the rate of strain in the flow while in
viscoelastic fluids, this is generally not the case. This is related to the fact that
polymers are in principle capable of storing elastic energy. In the view of Joseph
(1990), the characteristic speed of shear waves in polymer solutions (see Joseph et
al. 1986) provides a natural cut-off for velocities which fluctuate at high frequencies.
In fact the fluctuating velocities which are observed in turbulent flow of aqueous
drag-reducing solutions are of the right order, namely a few centimetres per second,
for such a cut-off to be important. This cut-off would then suppress the small eddies
and presumably lead to drag reduction.

De Gennes (1990) also states that the effects of polymers at high frequencies are
described by an elastic modulus, resulting in a truncation of the turbulent velocity
fluctuations at these frequencies. Using a simple scaling analysis and an elastic model

† From experiments it is found that drag reduction only occurs if a certain wall shear stress, or
Reynolds number is exceeded. This drag reduction onset Reynolds number is dependent on the
type of fluid used (see e.g. Virk 1975).
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for the polymer solution, he indeed finds that drag reduction might occur through
such a mechanism. His analysis however suffers from the shortcomings that it is
rather crude and it is not able to explain the detailed dynamics of wall turbulence.

The purpose of the present paper is to shed more light on the role of anisotropy
and elasticity in polymeric drag reduction. To that end, we have performed a DNS of
a turbulent pipe flow for a viscous anisotropic and for a viscoelastic anisotropic fluid.
For the first fluid, we have used a constitutive model based on Batchelor’s theory of
suspensions of elongated particles. Although this constitutive model is a rather crude
representation of a dilute solution of elongated polymers, we nevertheless believe
that it is able to capture the essence of the viscous anisotropic stresses connected
to stretched polymer molecules. Hence, the results of our simulation will reflect the
influence of this isolated effect of the polymers on the turbulence. The second fluid
model is an anisotropic Maxwell model, and consists of an extension of the first model
with an elastic component. Comparison of the results obtained with both models
may give us an indication of the role of elasticity in polymeric drag reduction. In
combination with the numerical simulations, we have conducted measurements in a
turbulent pipe flow with water and with a dilute polymer solution. The observations
have been carried out with the aid of a two-component LDV system. We have been
able to obtain information on the turbulence statistics up to fourth order in the
near-wall region. We have also measured turbulent power spectra at several radial
positions in the pipe.

The plan of the remainder of this article is as follows. After the formulation of
the basic equations in §2, we formulate the viscous anisotropic polymer model in
§3, and the viscoelastic anisotropic model in §4. In §5 the numerical procedures
of the calculations are briefly described. Section 6 contains a description of the
experiment, including the flow loop, the LDV setup, the polymer solution and the
experimental conditions. In §7 the results of both the numerical simulations and
the LDV measurements are presented. Finally, §8 contains the conclusions drawn
from the results and a discussion is presented focusing on a possible mechanism for
polymeric drag reduction.

2. Basic equations
We consider a fluid that consists of a Newtonian solvent to which a minute amount

of polymer is added. The basic equations that describe the incompressible flow of
such a fluid are given by

∇ · u = 0, (2.1)

ρ
Du

Dt
= −∇p+ ∇ · τ . (2.2)

In these equations u is the velocity vector, ρ is the density, p is the pressure and τ is
the deviatoric stress tensor. D/Dt denotes the material derivative. The first equation
is the continuity equation and the second the linear-momentum equation.

To close the problem, a relation must be given that expresses the stress τ in terms
of the deformation history. To this end we split the stress tensor τ into two parts,
namely a part due to the Newtonian solvent and a non-Newtonian part caused by
the polymers:

τ = τN + τP . (2.3)
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For τN the well-known Newtonian constitutive equation is valid:

τN = 2µD , (2.4)

where µ is the dynamic viscosity, D = (L+ LT )/2 is the rate-of-strain tensor in which
L = (∇u)T is the velocity gradient tensor. For the non-Newtonian stress τP however,
a different equation must be supplied, which will depend on the special properties of
the polymers. This is considered in the following sections for a viscous anisotropic
fluid and for a viscoelastic anisotropic fluid.

3. Viscous anisotropic (VA) model
To study the role played by the anisotropy due to extended polymers in the process

of drag reduction, we use a constitutive model derived by Batchelor (1971) for a
suspension of elongated particles. The rationale for using this model is that polymers
that are supposedly stretched out greatly in a certain direction act hydrodynamically
as elongated particles.

The model given by Batchelor (1971) in the limit of high aspect ratio and no
Brownian motion is

τ = τN + τP = 2µD + µ2D : nnnn, (3.1)

where the unit vector, n, gives the orientation of the particles. It follows from:

Dn

Dt
−Ω · n = D · n− (n · D · n)n. (3.2)

The µ2 in (3.1) is a constant that can be related to the solvent viscosity µ and the
particle properties by

µ2 =
πµNpl

3

6 ln(l/a)
, (3.3)

where Np is the number density of particles, l their length and a their radius.
Strictly speaking this constitutive equation is valid only if the suspension is dilute

in the sense of negligible particle interactions, i.e. it is required that (µ2/µ) � 1 (see
Batchelor 1971). However, Batchelor (1971) also showed that the form of equation
(3.1) is retained for larger concentrations, but with a different expression for µ2,
namely

µ2 =
πµNpl

3

6 ln(h/a)
, (3.4)

where h = (Npl)
−1/2 is the average interparticle spacing for a locally aligned distribu-

tion of particles. This expression is applicable when both l � h � a and the particle
concentration is not so small that the suspension is dilute in the sense of negligible
particle interactions, see Batchelor (1971).

Let us make an estimation of the value of µ2/µ for our drag-reducing polymer
solution according to the expressions above under the assumption that the polymers
are fully elongated. For linear, high-molecular-weight polymers (with a molecular
weight of the order 106 g mol−1), the following typical values apply: the total length
of a molecule equals l ≈ 30 µm, and its thickness is a ≈ 0.3 nm. For a concentration
of 20 w.p.p.m., Np ≈ 3× 1018 m−3. Therefore, µ2/µ ≈ 4000 if (3.3) is used, which falls
outside the applicability range of this equation. On the other hand, h ≈ 0.1 µm, so
that (3.4) may be applied and this equation gives µ2/µ ≈ 7000.

Applying the model given by (3.1) and (3.2) in combination with the basic equations
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(2.2) and (2.3) to a DNS of a turbulent flow leads to very large problems in terms
of computing capacity and computing time. What is worse is that the lack of any
diffusion of n could lead to computationally impossibly high spatial gradients of n,
in particular at boundaries (see e.g. Lipscomb et al. 1988).

Therefore, we have turned to an alternative way of solving (approximately) the
problem with an acceptable computational effort. There are a number of ad-hoc ways
of dealing with the aforementioned problems. The most reasonable one is to employ
the so-called ‘aligned particle approximation’, which is based on the observation that
large-aspect-ratio fibres often align quickly with the flow direction (e.g. Stover, Koch
& Cohen 1992; Papanastasiou & Alexandrou 1987). In fact, it can be shown that the
orientation parallel to the velocity is always a steady solution of (3.2) (see Keiller &
Hinch 1991). In that case

n =
u

|u| . (3.5)

The application of approximation (3.5) to an inherently unsteady flow, such as our
turbulent pipe flow, is questionable since this solution of (3.2) is strictly only valid for
steady flows. It is however the best alternative within our computational limitations.
The approximation may be not so bad if one considers that turbulent flow through
a straight pipe can be viewed as a shear flow with in addition small perturbations
due to the turbulent fluctuations. Therefore, for the turbulent pipe flow, the average
direction of the particles can be expected to point in the flow direction.

By applying the aligned-particle approximation, our anisotropic model for the stress
becomes

τ = τN + τP = 2µD + µ2D :
uuuu

(u · u)2
. (3.6)

We call this the viscous anisotropic model (VA model), because it describes a purely
viscous effect, as will be explained in the next section.

The shear viscosity of a dilute polymer solution is not much different from the
Newtonian shear viscosity of the solvent. Measurements by Draad (1996) of a
20 w.p.p.m. solution of polyacrylamide in tap water using a low-shear viscosimeter
show a slight increase of the zero-rate viscosity and shear-thinning behaviour of
non-degraded polymers. Since we want to separate the anisotropic behaviour of the
fluid from other effects, we neglect this slight change in the shear viscosity. Indeed,
equation (3.6) predicts in pure shear a constant shear viscosity µ, equal to that of the
solvent. In extensional flow, on the other hand, the uniaxial extensional viscosity of
model (3.6) is

ηE = 3µ+ µ2, (3.7)

whereas the biaxial extensional viscosity is

ηB = 6µ+ 1
2
µ2. (3.8)

Hence, by setting the parameter µ2 we can increase the extensional viscosities above
their Newtonian value. This agrees at least qualitatively with the behaviour found
in dilute polymer solutions for ηE as observed by for example Metzner & Metzner
(1970), James & Saringer (1980), and Fruman & Barigah (1982). These authors found
that ηE could be increased by even several orders of magnitude for dilute polymer
solutions; this is consistent with our estimation of µ2 ≈ 7000µ, given above. However,
practical computational restrictions impose a limit on the value of µ2, as will be
explained in §5. Therefore, we have limited the computations to two rather low values
of µ2, namely µ2 = 12µ and 27µ respectively. This means that according to (3.7) the
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uniaxial extensional viscosity of the anisotropic fluid equals ηE = 15µ respectively
30µ. For Newtonian fluids, ηE = 3µ and hence, ηE is increased by a factor of 5
respectively 10 with respect to the Newtonian value. Similarly, it follows from (3.8)
for the biaxial extensional viscosity that ηB = 12µ respectively 19.5µ, which is twice
respectively 3.25 times the Newtonian value. Note that the change in extensional
viscosity is different for the uniaxial and the biaxial cases. Because of these rather
low values, we may expect no quantitative agreement for our DNS results with the
results of the measurements of drag-reduced flows. However, the DNS results can be
compared with the measurements in a qualitative sense and as we will see later, the
tendencies that we find with our model seem to follow the measurements correctly.

It may further be noted that the first and second normal stress differences, N1 and
N2, are both equal to zero for model (3.6). The quantities N1, N2 and ηB have, to our
knowledge, not been measured for dilute polymer solutions such as we have used in
this study (20 w.p.p.m.). Hence, it cannot be claimed with certainty that the present
model has the correct behaviour for these parameters.

It will be clear that the model (3.6) is a rather simplistic representation of a
dilute solution of elongated polymers. Computational limitations have demanded
this simplicity, and have also been the cause of the need to restrict µ2 to rather
low values. Nevertheless, our model seems to be a reasonable first approximation
for modelling the anisotropic stresses related to stretched polymer molecules if one
assumes that their hydrodynamic effect is similar to that of elongated particles, as has
been suggested by Batchelor (1971), Bark & Tinoco (1978), Keiller & Hinch (1991),
and others. As such, we believe that using (3.6) in a turbulent pipe flow simulation
will give us insight into the role played in the process of drag reduction by elongated
polymers.

4. Viscoelastic anisotropic (VEA) model
The VA model (3.6) describes a purely viscous process, i.e. the stress is always in

phase with the rate of strain and no elastic effect is involved. This can be represented
by a mechanical model. Mechanical models provide a popular method of visualizing
linear viscoelastic behaviour in general. These one-dimensional models consist of a
set of springs and dash-pots so arranged that the overall system has a response like
a real material, although the elements themselves may have no direct analogues in
the actual material. The correspondence between the behaviour of the model and the
real material is achieved if the differential equation relating the force, extension and
time for the model is the same as the equation relating stress, strain and time for the
material.

The mechanical counterpart representing the non-Newtonian part of the VA model
(3.6) is depicted in figure 1(a). It consists of a dash-pot with viscosity µ2 acting only
in the direction of u. In this direction, the equation relating the strain (extension) ε
to the stress (force) σ is

σ = µ2ε̇. (4.1)

Translating this picture to the three-dimensional situation, and remembering that the
damping action of the dash-pot is restricted to the u-direction only, we obtain

τP = µ2(u · D · u)uu/|u|4. (4.2)

Here u · D · u/|u|2 is the projection of the three-dimensional rate of strain on the
direction of u/|u|, and the vector product uu/|u|2 appears because the stress tensor
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Figure 1. Mechanical model of (a) the viscous anisotropic model, and (b) the viscoelastic
anisotropic model.

τP must have a component in the direction of u only. Equation (4.2) is precisely the
non-Newtonian part of the VA model (3.6).

This purely viscous mechanical model can now be extended with an elastic com-
ponent. A possible way to do this is shown in figure 1(b), in which a spring with
elastic modulus G is added in series to the dash-pot. Both components of the model
act only in the direction of u. The equation relating the strain (extension) ε to the
stress (force) σ in case of figure 1(b) now becomes

λσ̇ + σ = µ2ε̇, (4.3)

in which λ = µ2/G is the characteristic relaxation time of the system. The three-
dimensional analogue of (4.3) can now be written as

τP = Fuu/(u · u),
λḞ + F = µ2(u · D · u)/(u · u).

}
(4.4)

This model can be interpreted as an anisotropic variant of the classical linear Maxwell
fluid model. If viscous effects dominate over elastic effects, then (4.4) reduces to (4.2),
but if elastic effects dominate, (4.4) represents a Hookean-type material.

Summarizing, our viscoelastic anisotropic model (VEA model) now reads

τ = 2µD + τP , (4.5)

in which τP is given by (4.4).

We stress that we do not pretend that this model gives an adequate representation
of the elastic properties of a dilute polymer solution. It is merely the simplest
extension of the anisotropic fluid model (3.6) with an elastic effect. Because of the
anisotropy of the model, the elasticity will be present only in flow deformations
with an extensional component, so that, strictly speaking, the model is incapable of
propagating shear waves. Nevertheless, we believe that our simulation in which we
have used the viscoelastic anisotropic model is able to give some indication of the
importance of elastic effects for polymeric drag reduction.
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Figure 2. Computational domain and notation convention of the direct numerical simulation.

5. Numerical procedure
For the DNS of a turbulent pipe flow with the fluids defined by the models proposed

in §§3 and 4, we used a numerical code formulated in a cylindrical geometry. A full
account of the numerical procedures can be found in Eggels (1994), Pourquié (1994),
or Eggels et al. (1994). In this section only the essentials are summarized.

The cylindrical pipe geometry is shown in figure 2. The diameter of the pipe is
denoted by D and the pipe length by L with L = 5D. In this geometry, (2.1) and
(2.2) were solved, using the VA and the VEA model, respectively. The equations were
made dimensionless with the friction velocity uτ, the pipe diameter D and the fluid
density ρ. The friction velocity is defined as ρu2

τ = τw , in which τw is the mean shear
stress at the wall. The equations then read

∇∗ · u∗ = 0, (5.1)

Du∗

Dt∗
= −∇∗p∗ + ∇∗ · τ ∗, (5.2)

in which the asterisk denotes a non-dimensional quantity. The expression for τ ∗

depends on the model used. For the VA model the following equation applies (see
(3.6)):

τ ∗ =
2

Reτ
D∗ + µ∗2D

∗ :
u∗u∗u∗u∗

(u∗ · u∗)2
. (5.3)

The Reynolds number Reτ is defined as Reτ = uτD/ν, where ν = µ/ρ is the Newtonian
kinematic viscosity. The equation for the VEA model (see (4.4)) reads

τ ∗ =
2

Reτ
D∗ + F∗

u∗u∗

u∗ · u∗ , (5.4)

λ∗
DF∗

Dt∗
+ F∗ = µ∗2

u∗ · D∗ · u∗
u∗ · u∗ . (5.5)

In all calculations, the Reynolds number Reτ was set at 360. This corresponds to
Re = UbD/ν = 5300 in a turbulent pipe flow of a Newtonian fluid where Ub is the
bulk mean velocity. Fixing Reτ at a certain value is equivalent to keeping the pressure
gradient constant. Therefore, a possible drag reduction would manifest itself as an
increase of the flow rate in our computations.

We performed two simulations with the VA model, the first with µ∗2 = 12/Reτ =
0.033, and the second with µ∗2 = 27/Reτ = 0.075. In the simulation with the VEA
model, (5.4)–(5.5), we put µ∗2 = 12/Reτ, i.e. equal to the value used in the first
simulation with the VA model. The non-dimensional relaxation time was taken to be
λ∗ = 0.02. It will be shown in §7 that with this choice the VEA model simulation has
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resulted in viscous and elastic contributions to the stress in equation (5.5) which are
of the same order of magnitude.

Equations (5.1)–(5.5) were discretized with a second-order finite volume technique
on a staggered grid. For the time integration, the advection terms in (5.2) and (5.5)
containing derivatives in the circumferential direction, the source term in (5.5) and
the Newtonian diffusion terms containing derivatives in the circumferential direction
were treated implicitly. For the advection terms the Crank–Nicholson scheme was
used and for the source term and for the diffusion terms the Euler-backward scheme.
All other terms were advanced in time using an explicit scheme, namely the lagged
Euler-forward scheme for the remaining Newtonian diffusion terms and the leapfrog
method for the remaining advection terms and also for all non-Newtonian stress
terms in the VA and VEA models.

The computations were carried out with 96×128×256 grid points equally spaced in
r-, θ-, z-directions respectively. As discussed in Eggels et al. (1994), this resolution is
sufficient to resolve all turbulent length scales. The time step ∆t was computed inter-
actively using a criterion to avoid numerical instabilities (Schumann 1975; Pourquié
1994). The mean value of ∆t∗ was approximately 0.00011 for the first VA and the
VEA simulation, and 0.000036 for the second VA simulation. These values were
well below the smallest turbulent time scale in the pipe flow. The small value of ∆t
was due to time-explicit treatment of the non-circumferential and the non-Newtonian
terms. Through these terms ∆t is directly coupled to the value of µ2 in the anisotropic
models: the larger µ2, the smaller ∆t must be chosen for the numerics to remain
stable. This imposes a practical limit for the value of µ2, to which we have already
referred above.

The simulations, with the exception of the second VA simulation, were initiated
from a fully developed turbulent field of a Newtonian fluid at Reτ = 360 obtained by
Eggels et al. (1994). At t∗ = 0 the polymer model was turned on. After a development
period of 10t∗, which is 10D/uτ, the computations were continued for an additional 4t∗

during which data fields were stored every 0.1t∗. In post-processing algorithms, these
data fields have been used to compute the various statistical results to be presented
in §7. The time separation of 0.1t∗ between two sequential data fields was large
enough compared to the integral time scale of the turbulent fluctuations for the data
fields to be nearly independent realizations of the flow. The flow statistics have been
obtained by spatial averaging in the homogeneous streamwise (z) and circumferential
(θ) directions and by temporal (or ensemble) averaging over all stored data fields.
Statistics obtained in such a way are denoted by an overbar in the following sections.

The second VA simulation was initiated from the final data field of the first VA
simulation at t∗ = 14 and continued until t∗ = 25. The turbulence statistics have in
this case been computed from data fields collected between t∗ = 20.2 and t∗ = 24.5
using the same procedure as described in the previous paragraph.

The simulations were carried out on the Cray Y-MP C98/4256 computer of the
Academic Computing Services Centre (SARA) in Amsterdam. The computational
requirements were as follows. For the first VA-model simulation, a memory of 92.3
Mwords (=738 Mbyte) was required, the execution of one time step took 5.4 s,
and about 190 h was needed to perform the full simulation. For the second VA
simulation, these values were 92.3 Mwords, 5.3 s and 450 h, respectively. Finally, the
VEA simulation required 98.5 Mwords (=788 Mbyte) of memory, the CPU-time to
perform one timestep was approximately 5.7 s, and about 200 h was needed to carry
out the total simulation. These values underline the limitation that we had to put on
the value of µ2.



Drag reduction by polymer additives 203

Pressure meter

Test section
Pipe

Flow meterTrip
ring

Settling chamber

Pump
Free-surface reservoir

Figure 3. The pipe flow facility.

6. Description of the experimental set-up
In this section we briefly describe the experimental set-up. A more detailed

treatment can be found in den Toonder (1995) and Draad (1996).

6.1. The pipe flow loop

The laboratory experiments were performed in the re-circulatory pipe flow facility of
the Laboratory for Aero- and Hydrodynamics. A schematic diagram of this facility
is shown in figure 3. An extensive description of this set-up and its various design
details can be found in Draad (1996). The total volume of the system is 1.4 m3.
The main part of the facility consists of a cylindrical Perspex pipe with length 34 m
and inner diameter 40 mm. The pump used is a so-called disk pump, manufactured
by Begemann. This type of pump avoids strong degradation of the polymers (den
Toonder et al. 1995a). Before entering the pipe, the fluid passes first through a flow
straightening device and then through the settling chamber, which contains another
flow straightening device as well as several screens. The transition to the pipe consists
of a smooth contraction. At a distance of 1 m behind the settling chamber a so-called
‘trip ring’ is inserted in the pipe to force transition to turbulence. To avoid secondary
circulation due to free convection, the entire pipe is insulated with 3 cm Climaflex
pipe insulation. In the whole set-up no contact of the fluid with metals is allowed,
because the polymers are damaged by metal ions, i.e. zinc, copper or iron.

The pressure gradient along the pipe is measured with a membrane differential-
pressure transducer (Validyne Engineering Corp., type DP15-20) between the positions
18 m and 28 m behind the settling chamber. The flow rate is observed with a magnetic
inductive flow meter (Krohne Altometer, type SC 100 AS). The temperature of the
fluid is measured with a thermocouple in the free-surface reservoir. The measurement
data of the pressure gradient, flow rate and temperature are sampled automatically
with a PC.

The curvature of the pipe wall leads to problems in measuring very close to the
wall with LDV because of the refraction of the laser beams by the curved pipe wall.
This difficulty arises because of the differences in refractive index of the test fluid (i.e.
water with n = 1.33) and the material of the pipe (i.e. Perspex with n = 1.49). To
minimize this problem, we have designed a special test section, illustrated in figure 4.
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Figure 4. The test section.

In the test section, located 30 m downstream of the inlet of the pipe, the pipe wall is
partly replaced by a thin foil made of Teflon FEP (fluorized ethylene propylene) with
a thickness of 190 µm, kindly provided by Du Pont de Nemours. This material has
a refractive index of n = 1.344 ± 0.003, which is quite close to that of our test fluid.
The use of this foil in combination with the square Perspex box filled with water
around the cylindrical foil minimizes the refraction errors of the laser beams. As a
result we can perform measurements down to a distance of 0.2 mm from the wall,
which is about 5 viscous lengths for the measurements presented in this paper. The
inner diameter of the pipe segment formed by the foil is 40.37 mm. The walls of the
Perspex box have a thickness of 6 mm while the distance of these walls to the pipe
centre is 60 mm.

6.2. The LDV set-up

The measurements were performed with a 2-component LDV system manufactured
by Dantec. This system uses two orthogonal pairs of laser beams with pairwise light
of a different wavelength to measure the fluid velocity in two directions. Each of the
pairs forms a so-called ‘measurement volume’ at the position where the two beams
intersect. The light that is scattered by a particle travelling through the measurement
volume is collected in the backscattered direction. The optics to focus the laser
beams into the pipe and also to receive the scattered light is built in one measuring
probe (Dantec) with a focusing front lens with focal length 80 mm. This probe is
attached to a three-dimensional traversing system also supplied by Dantec. The probe
is connected to an Argon-ion laser of Spectra Physics (model 2020) via a fibre and
a transmittorbox. The transmittorbox splits up the light coming from the laser into
two wavelengths, namely 514.5 nm and 488 nm (one for each laser beam pair), and
feeds it into the fibre through which the light travels to the measuring probe. At
the same time, the fibre carries the backscattered laser light from the probe back
to two photo-multiplier (PM) tubes, via the transmittorbox and a colour separator
that separates the two colours. The output from the PM tubes goes to two “Burst
Spectrum Analyzers” (Dantec, type Enhanced 57N20 and Enhanced slave 57N35),
one for each laser beam pair, or velocity component. By means of a spectral analysis
of the signal, each BSA computes the Doppler shift between the transmitted and the
scattered light, and this shift is proportional to the velocity component of the particle
perpendicular to both beams.

The streamwise (or axial) velocity component was measured using the 488 nm
laser beam pair, and the normal (or radial) component with the 514.5 nm pair. The
dimensions of the measurement volumes are estimated to be 20, 20 and 100 µm in
the streamwise, normal and spanwise directions respectively.
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In all measurements to be presented later in this paper, the probe was traversed in
the vertical direction. As a result the measurement volumes travelled along a vertical
plane through the central axis of the pipe, so that at each position we measured the
axial and radial velocity components.

In all experiments the fluid was seeded with pigment based on TiO2 to get high
data rates. The power supplied by the laser was always 2.5 W, corresponding to a
power of approximately 150 mW in each laser beam.

6.3. The polymer solution

The polymer that we used in our experiments is Superfloc A110 (Cytec Industries),
which is a partially hydrolysed polyacrylamide (PAMH). Superfloc A110 has a molec-
ular weight of 6–8×106 g mol−1, according to the manufacturer. The advantage of
this polymer over other types of polymer encountered in the literature (e.g. Polyox
WSR301, Union Carbide, or Separan AP273, Dow Chemical Company), is that it is
relatively resistant to mechanical degradation (see den Toonder et al. 1995a). Me-
chanical degradation is the breaking of the polymers by mechanical action, which
reduces their molecular weight and thus their capability for drag-reduction (see Virk
1975). This is an important point, since we use a re-circulatory experimental set-up
in which the polymers are continuously subjected to deformations, especially in the
pump, which might cause the scission of the polymers. Severe mechanical degrada-
tion leads to unacceptable changes in the measurement conditions during an LDV
measurement. The use of Superfloc A110 in combination with the disk pump mini-
mizes this problem, as shown in den Toonder et al. (1995a). Nevertheless, there was
always some degradation present, particularly when a solution was fresh. To ensure
during our LDV measurements virtually stationary drag reduction, the set-up was
operated for about 20 hours after the addition of the polymer, before the actual
LDV measurements were started. During this period, the drag reduction decreased
from approximately 70% to about 20%, due to degradation. After this intentional
degradation, LDV measurements under constant polymer conditions were possible.

In the experiments presented in this paper we used a Superfloc A110–water solution
with a polymer concentration of Cp = 20 w.p.p.m. That means that only 28 g of
polymer was dissolved in the entire system. First a 1000 w.p.p.m. master solution
was prepared in a self-made stirring vessel as follows. The vessel was filled with 70 l
of “Delft” tap water. A total amount of 70 g of Superfloc A110 was divided into
seven equal portions. Each of the portions was dissolved in 0.3 l ethanol. The seven
suspensions thus obtained were then added to the tap water in the vessel while stirring
which created a large vortex in the vessel. For the next two hours the solution was
mixed gently. After this period, the solution contained small air bubbles, that were
allowed to escape in the following 24 hours. At the end of this procedure, the solution
obtained was visibly clear and it did not contain any detectable inhomogeneities.

The 1000 w.p.p.m. solutions prepared in this way were used in the pipe set-up
within 1 to 2 weeks. To obtain the desired concentration, i.e. 20 w.p.p.m., 28 l of
the 1000 w.p.p.m. solution were added in the free-surface reservoir (see figure 3) and
mixed by hand, while at the same time the pump operated to obtain a flow rate of
approximately 3000 l h−1 to mix the polymer in the entire set-up.

6.4. The experimental conditions

We conducted measurements of the turbulent pipe flow of tap water and polymer
solutions in the range Reτ ≈ 340 to ≈ 1400. In this paper we will only give the results
for Reτ ≈ 1035, larger than the Reτ at which the computations were performed,
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Profile measurements Spectrum measurements

Symbol used in figures � 2 � 3

Cp (w.p.p.m.) 0 20 0 20
uτ (mm s−1) 27.8 27.7 27.7 27.6
ν/uτ (mm) 0.0388 0.0391 0.0390 0.0395
Q (h−1) 2191 2870 2180 2469

Re = UbD/ν 17773 23281 17680 19844
Reτ = uτD/ν 1039.2 1033.5 1035.4 1022.2
DR (%) - 24.2 - 12.2

Table 1. Experimental conditions of the measurements.

i.e. 360. The reason is, that at the lowest Reynolds number in the measurements
the observed drag reduction was negligible after the intentional degradation period
mentioned in the previous section because the wall shear stress turned out to be too
small for drag reduction to occur in that case. Hence, it was impossible to carry
out LDV measurements under stationary polymer conditions for Reτ ≈ 340. The
complete set of the measured data can be found in den Toonder (1995). It may be
noted here that the results for the measurement with pure water at Reτ ≈ 340 agree
with the data presented in Eggels et al. (1994) for Reτ = 360.

Table 1 lists the experimental conditions of the measurements. In the first row the
symbols are shown which will be used in the figures in the remainder of this paper for
the corresponding measurements. We performed two types of measurement, which
were carried out independently, namely profile measurements from which profiles of
turbulence statistics have been computed, and spectrum measurements from which
turbulent power spectra have been determined.

The mean data rate in the profile measurements was fdr ≈ 60 Hz, and the measure-
ment time per position was T = 300 s. The spectrum measurements were performed
at three different positions in the pipe: y+ ≈ 12, 30 and 125. The mean sampling rate
at these positions was approximately 2400, 3000 and 4000 Hz respectively. In the
spectrum measurements, each time series consisted of approximately 196 000 samples.

A concentration CP = 0 denotes a measurement with pure water (i.e. “Delft” tap
water).

The measurements for water and polymer solution are compared at (almost)
equal friction velocity uτ. This quantity has been determined from the pressure
measurements according to

uτ =

(
D

4ρ

∣∣∣∣∆P∆z

∣∣∣∣)1/2

, (6.1)

where D is the diameter of the pipe, ∆P the measured pressure difference and ∆z the
distance over which ∆P is measured.

The viscous length scale ν/uτ is composed of the kinematic viscosity of the fluid,
ν, and the friction velocity. For ν, the value which applies to water has been used in
the polymer solution measurements as well, based on the assumption that the small
polymer concentration used does not alter the shear viscosity of the fluid. The value
of ν has been calculated at the temperature measured in the pipe.

The Reynolds number Re is defined with the bulk velocity in the pipe, i.e. Re =
UbD/ν, and has been determined from the measured flow rate Q. The Reynolds
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number Reτ is defined with the friction velocity: Reτ = uτD/ν. The centre of the pipe
in wall units thus is given by Reτ/2.

The amount of drag reduction has been computed from the measured flow rate
with the equation

DR =

(
1− QN

QP

)
× 100%, (6.2)

in which the subscript N denotes the Newtonian fluid, and the subscript P the
polymer solution. The values of DR in our experiments are rather lower than
previously reported values because of the intentional degradation of the polymers
before measuring with LDV, as described in §6.3. Still, the influence of the polymers
is quite clear, as will be shown in §7.

6.5. Processing of the LDV data

The turbulence statistics have been computed from the time series for the profile
measurements according to standard procedures. All results have been corrected for
the spatial integration due to the finite size of the measurement volumes with the
methodology described in Durst, Jovanovic & Sender (1993). We have computed
statistical errors for various radial positions following Lumley & Panofsky (1964).
These are shown as error bars in the resulting figures of §7. The estimated relative
error for the mean velocity is about 0.4%, and 1.2% for the root-mean-square.

The power spectra have been computed as follows. The observed time series, which
consisted of approximately 196 000 samples distributed in time according to a Poisson
random distribution, were re-sampled at equidistant times using linear interpolation
between the measured data with the re-sampling frequency equal to the mean data
rate of the measurement (fdr). The re-sampled time series were then divided into 186
(±4) half-overlapping blocks each containing 2048 data points. For each of these
blocks, the power spectrum was computed using a FFT and a Bartlett window. The
power spectra presented in the figures to follow have been obtained by averaging the
spectra of the blocks.

7. Results
In this section we present the results obtained from the DNS with the polymer

models described in §§3 and 4 and we compare them with our LDV results. All
numerical Newtonian data in this section have been computed from data fields
obtained by Eggels (1994). We stress that the comparison between the numerical
and the laboratory results can be only a qualitative one, because apart from the
rather (over)simplified constitutive equations used in the DNS, the Reynolds number
for the DNS and LDV measurements is different. In den Toonder (1995) it is for
instance shown that for the Newtonian data we already observe differences between
the laboratory and numerical results, due to the difference in Reynolds number.
In the simulations, a low Reynolds number must be chosen due to computational
limitations, while in the experiments Re could not be chosen too low, because as
mentioned above this resulted in negligible drag reduction.

7.1. The viscous anisotropic model (VA)

7.1.1. Flow rate

The time evolution of the flow rate Q∗ is depicted in figure 5 for the viscous
anisotropic (VA) model. Q∗ at t∗ = 0 corresponds to the flow of the solvent. Note
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Figure 5. Evolution of the flow rate for the viscous anisotropic model. At t∗ = 0 the polymer model
is turned on in a Newtonian flow field. The dashed line indicates the mean value of Q∗ between
t∗ = 10 and 14 (model I, for which µ∗2 = 0.033). The dotted-dashed line indicates the same quantity
between t∗ = 20.2 and 24.5 (model II, for which µ∗2 = 0.075).

that the pressure gradient is kept constant in our DNS so that a drag reduction will
appear as an increase in flow rate. From t∗ = 0 to 14, the non-Newtonian parameter
µ∗2 has been taken to be 0.033 (i.e. VA model I); from t∗ = 14 to 25, µ∗2 = 0.075
(VA model II), see (5.3). From figure 5 it is clear that the viscous anisotropic fluid
model results in a drag reduction. The fluctuations still visible for model I between
t∗ = 10 and 14 are of a statistical nature. The magnitude of these fluctuations is
comparable to that found in the Newtonian simulations of Eggels et al. (1994) in
the steady-state regime (see also Eggels 1994). The fluctuations in the simulation
of model II between t∗ = 19 and 25 remain large and we may doubt whether a
steady state has yet been reached at t∗ = 25. However, due to lack of computing
time, the simulation could not be continued after t∗ = 25. Nevertheless, from the
statistics computed from model II tendencies that follow from increasing µ∗2 in the
VA model can be clearly distinguished, as we will see later in this section. The dashed
line in figure 5 indicates the mean value of Q∗ in the time interval between t∗ = 10
and 14, which is 12.1 (i.e. for model I). The dotted-dashed line indicates the same
quantity for model II, i.e. averaged between t∗ = 20.2 and 24.5, and it equals 12.8.
The value of the drag reduction obtained, defined by (6.2), is thus DR = 4.1% for
model I and DR = 9.5% for model II. The drag reduction for model I is still small
when compared to values that are obtained in experiments; however, it is an order
of magnitude larger than DR obtained with the model used in den Toonder et al.
(1995b). In that study only viscous effects but no anisotropy is taken into account
and the increase of the extensional viscosity is the same as in VA model I. Increasing
µ∗2 such that the uniaxial extensional viscosity of the VA model is doubled, while the
biaxial extensional viscosity is increased by a factor 13/8 (model II, see §3), more
than doubles the drag reduction. This clearly suggests that anisotropy introduced in
the stress-deformation relation is important for drag reduction.

7.1.2. Mean velocity profile

In figure 6(a) we illustrate the non-dimensional mean axial velocity profile as
computed with the VA model as a function of wall distance, scaled with inner
variables: y+ = yuτ/ν. The centre of the pipe lies at y+ = 180. In this figure we also
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Figure 6. Mean axial velocity (a) for the viscous anisotropic model (DNS), and (b) as measured
with LDV. The centre of the pipe is at y+ = 180 for the DNS, and at y+ ≈ 520 for the LDV.

depict the functions which are generally believed to describe the mean axial velocity
profile of turbulent wall flows of Newtonian fluids:

U+
z = y+ if 0 < y+ < 5, (7.1)

U+
z = A ln y+ + B if y+ > 30, (7.2)

with A = 2.5 and B = 5.5, as recommended by Kim, Moin & Moser (1987). The
region y+ < 5 is called the viscous sublayer, y+ > 30 the logarithmic layer. The inner
region where 5 < y+ < 30 is the so-called buffer layer. The Newtonian data, which
were obtained in a DNS by Eggels et al. (1994), do not follow the logarithmic law
(7.2). This is due to the low Reynolds number of the flow, as has been confirmed by
experiments at the same Reynolds number (den Toonder 1995; Eggels et al. 1994).
Figure 6(a) shows that the computed profiles obtained with the VA model follow the
Newtonian data up to y+ = 5. In the region above y+ = 30, the profile is shifted
upward with an approximately parallel displacement for VA model I. In the case of
model II, the shift is larger which is consistent with the larger drag reduction, but not
quite parallel. This might be because the computation has not completely stabilized
to a stationary flow. Figure 6(b) shows the result for the LDV measurements. Here
the buffer layer is thickened, which causes an upward shift of the logarithmic profile.
However, this shift is not quite parallel to the Newtonian data. The fact that we
refer here to a parallel shift of the velocity profile goes back to experiments in the
past, which assumed that the slope of the logarithmic profile is the same for water
and drag-reduced flows (probably inspired by Virk’s elastic sublayer model, see Virk
1975). However, careful inspection of recent measurements, such as those of Pinho &
Whitelaw (1990) (pipe flow), Harder & Tiederman (1991) (channel flow) and Wei &
Willmarth (1992) (channel flow), shows that the slope actually is somewhat increased
for polymer solutions and this is confirmed by our experiments. This result, along
with the fact that in the computations the Reynolds number is too low for a well-
defined logarithmic region to exist, means that the (non-) parallelness of the velocity
shift should not be used as a criterion to judge our simulation results.

Nevertheless, comparison of figures 6(a) and 6(b) shows that the general behaviour
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of the mean velocity profile obtained with the VA models is correct, i.e. no change in
the viscous sublayer, a thickening of the buffer layer and a corresponding offset of
the logarithmic region, resulting in an increase of the velocity profile in the central
region.

7.1.3. R.m.s. statistics

Figures 7(a), 7(c) and 7(e) give the non-dimensional root-mean-square (r.m.s.)
profiles of the axial, radial and circumferential velocity fluctuations respectively for
both VA simulations.

As can be seen in figure 7(a), the peak of the axial r.m.s. profile is shifted away
from the wall to a higher y+ value, and the magnitude of the peak is increased. This
behaviour is stronger for model II, with the larger drag reduction. Overall there is
good qualitative agreement with the measured results shown in figure 7(b), except
that in the simulations we do not find the decrease in r.m.s.(u∗z) that is present in
the experiments close to the wall, i.e. below y+ = 10. Furthermore, in the centre of
the pipe, the r.m.s. of the axial velocity fluctuations for the VA models is decreased
somewhat, which is also not confirmed by the experiments shown in figure 7(b).
However, such decrease has been found in the measurements of Rudd (1972) and
Pinho & Whitelaw (1990), and less significantly in the results of Wei & Willmarth
(1992).

In accordance with the experimental data, figure 7(c) shows a decrease of the radial
r.m.s. velocity over almost the entire pipe cross-section. In addition we observe a
shift away from the wall of the peak of this profile. In the centre, model I shows a
slight decrease in r.m.s.(u∗r ) compared to the Newtonian data. VA model II leads to
no change in the pipe centre, which is more in line with the LDV data of figure 7(d).
Moreover, the data in figure 7(d) indicate that the measurements close to the wall are
not reliable and probably strongly influenced by measurement errors. These errors
cannot be explained by the statistical inaccuracies and are due to other error sources
such as reflections by the pipe wall which disturb the LDV signals (see also den
Toonder & Nieuwstadt 1996). The vertical laser beam pair, that measures the radial
velocity component, is most sensitive to such disturbances.

The circumferential r.m.s. (figure 7e), which is only available from our DNS,
is smaller everywhere in the pipe than the Newtonian value, as confirmed by the
measurements of Pinho & Whitelaw (1990).

The most important conclusion from these simulation results is that the VA
models produce the correct tendency for the change in turbulence intensities, i.e. an
enhancement in the axial direction and a suppression in the radial and circumferential
directions. This effect, which implies that the turbulence structure is modified rather
than suppressed, has not been found for the extensional viscosity model used in den
Toonder et al. (1995b). Also the shift away from the wall of the peak values seems
to be correctly simulated by the VA models. Consequently, we consider this a strong
indication that anisotropy of the stress is essential in the effect of polymers on the
flow.

7.1.4. Higher-order statistics

The higher-order turbulence statistics obtained from the DNS using the VA models
and from the LDV experiments are depicted in figures 8 and 9.

The change in the axial skewness profile given in figure 8(a) is very similar to the
behaviour measured with LDV (figure 8b). There is a slight increase in Sz in the
region below y+ = 20, and a clear decrease around y+ = 100.
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Figure 7. R.m.s. profiles: (a) axial profiles for the VA models (DNS); (b) axial profiles measured
with LDV; (c) radial profiles for the VA models (DNS); (d) radial profiles measured with LDV; (e)
circumferential profiles for the VA models (DNS). The centre of the pipe is at y+ = 180 for the
DNS, and at y+ ≈ 520 for the LDV.
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Figure 8. Skewness profiles: (a) axial profiles for the VA models (DNS); (b) axial profiles measured
with LDV; (c) radial profiles for the VA models (DNS); (d) radial profiles measured with LDV.

Figure 8(c) shows that the radial skewness Sr is not influenced much by the VA
model. This is confirmed by the measurements in figure 8(d), which also shows large
scatter below y+ = 10, for the reasons discussed in connection with the r.m.s. values
near the wall.

The VA model also seems to give the correct tendency for the axial flatness factor
Fz , as follows from comparing figures 9(a) and 9(b). With respect to the minimum
value, there is a slight shift away from the wall. Around y+ = 100 we find a small
increase. The somewhat odd behaviour of the computed Fz close to the centreline is
probably due to the lack of sufficient independent realizations in this area to reliably
compute Fz .

The radial flatness factor however, shows a large change in behaviour resulting from
the VA model: the value of Fr close to the wall is significantly increased. This cannot
be confirmed unequivocally by our LDV measurements. Although figure 9(d) seems
to indicate a decrease in Fr below y+ = 10, we found in other LDV measurements
increases of this quantity (see den Toonder 1995). Moreover, we already have seen
above that the radial turbulence statistics are considerably influenced by measurement
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Figure 9. Flatness profiles: (a) axial profiles for the VA models (DNS); (b) axial profiles measured
with LDV; (c) radial profiles for the VA models (DNS); (d) radial profiles measured with LDV.

noise very close to the wall, and this may explain the large differences found between
various experiments. It is also shown in Xu et al. (1996) that it is very difficult to
measure the radial flatness factor correctly near the wall. Due to these uncertainties,
confirmation of the effects on Fr due to the VA model very close to the wall is not
yet available.

7.1.5. Stresses

The turbulent shear stress (or ‘Reynolds stress’) τ∗T is defined as

τ∗T = (u∗z −U∗z )(u∗r −U∗r ). (7.3)

This quantity is depicted in figure 10. For the DNS results, the peak of the profile is
again shifted somewhat toward a higher y+ value, while its magnitude is decreased a
little in comparison with the turbulent stress in a Newtonian pipe flow. The change is
larger for model II than for model I. This behaviour for τ∗T is completely analogous
with the LDV results depicted in figure 10(b).

The DNS data allow us to calculate the various contributions to the shear stress.
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Figure 10. Turbulent shear stress (a) for the VA models (DNS), and (b) measured with LDV.

These are illustrated in figures 11(a) and 11(c) for both VA models. The viscous shear
stress τ∗V is defined as

τ∗V = − 1

Reτ
(
∂u∗z
∂r∗

+
∂u∗r
∂z∗

). (7.4)

The components of the ‘polymeric’ stress tensor for the VA models are defined as:

τ∗P ,ij = −µ∗2(u∗ · D∗ · u∗)u∗i u∗j . (7.5)

To obtain the polymer shear stress τ∗P , i is set equal to the radial coordinate direction
r and j to the axial direction z.

For fully developed turbulent pipe flow, the sum of the shear stresses must obey
the following balance:

2
r

D
= τ∗T + τ∗V + τ∗P . (7.6)

From figures 11(a) and 11(c) it can be seen that the computed stresses indeed follow
this relation fairly well.

For model II, this seems to be in contradiction with our earlier statement of the
flow not having reached a steady state in view of the large fluctuations in Q∗ present in
the simulation at t∗ = 25 (see figure 5). However, in the averaging procedure we have
integrated over exactly one period of this large fluctuation (i.e. between t∗ = 20.2 and
24.5), so that its effect is probably cancelled out. Therefore, we still believe that the
simulation of model II has not strictly reached a steady state, although figure 11(c)
suggests otherwise. For model I, no special averaging period was chosen, and the
magnitude of the fluctuations in Q∗ for this case, along with figure 11(a), indicates
that this simulation indeed is close to a steady-state situation. This is consistent with
our suggestion that the fluctuations of the flow rate between t∗ = 10 and t∗ = 14 in
figure 5 are mainly due to the turbulence and not to a residual numerical effect.

Figures 11(a) and 11(c) show that the contribution of τ∗P to the total shear stress is
very small. It means that in our VA simulations no so-called ‘Reynolds stress deficit’
appears (which implies a significant non-Newtonian contribution to the shear stress).
The variation in the turbulent shear stress that can be observed in figure 10(a) is
completely compensated by viscous effects. In contrast, we have found a Reynolds
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Figure 11. Shear stress profiles: (a) VA model I (DNS); (b) LDV measurement, polymer solution;
(c) VA model II (DNS).

stress deficit in our LDV experiments. This is illustrated by figure 11(b), in which
we show the various contributions to the shear stress for the drag-reduced flow. The
turbulent shear stress, τ+

T , was measured directly and the viscous shear stress τ+
V was

computed from the measured mean velocity profile. The polymer shear stress τ+
P is

determined from the stress balance (7.6) by substituting the measured τ+
T and τ+

V .
It turns out that the polymers make a significant contribution to the shear stress
outside the core region of the pipe, particularly in the buffer layer. The majority
of experimental papers on polymeric drag reduction also report a Reynolds stress
deficit, although also some exceptions exist. Harder & Tiederman (1991) for example
have used a very dilute polymer solution that gave a drag reduction but no Reynolds
stress deficit.

To elaborate the additional stresses due to the polymer model, we show in fig-
ure 12(a) the profiles of the largest components and in figure 12(b) the smaller
components of the polymeric stress tensor for the VA model II. These are defined
according to (7.5). From figure 12(a) it is clear that the zz component has the largest
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value. This is not too surprising, because in the simulations the anisotropic direction
was chosen along the local instantaneous velocity, and in the mean the orientation of
u∗ is in the axial or z-direction. Furthermore, the τ∗P ,zz profile peaks around y+ = 10,
which is in the buffer layer. Also, the rz component seems to have a significant value
when compared with the other components in figure 12(b). However, the rz compo-
nent is the polymer shear stress already shown in figure 11(c) where we have argued
that its contribution to the total shear stress is minimal. According to figure 12(b), all
other polymeric stress components are quite small over the entire pipe cross-section.
Hence it seems that the changes in the flow leading to the drag reduction are mainly
due to the additional normal stress in the axial direction, and to a much smaller
extent to the additional shear stress.
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7.1.6. Turbulent energy production

The turbulent energy production Pzz is defined as

Pzz = −2τT
dUz

dr
. (7.7)

The influence of the VA model on the turbulent energy production P+
zz can be

observed in figure 13(a). For y+ > 10, there is almost no change with respect to the
Newtonian profile. For run II a very slight shift away from the wall and a minimal
decrease of the peak value may be noticed; however the clear change found in the
LDV measurements of figure 13(b), is not confirmed by the simulations. Also, the
increase of P+

zz in the region y+ < 10 found in the DNS results of figure 13(a) cannot
be confirmed by the data of figure 13(b), partly due to the lack of measurement
points.



218 J. M. J. den Toonder, M. A. Hulsen, G. D. C. Kuiken and F. T. M. Nieuwstadt

4.0

–3 –1

3.0

0

(a) (b)

–5

2.5

2.0

0
–6

1.5

Newtonian fluid
VA model I
VA model II

–7

Newtonian data, y+ = 29.8
20 w.p.p.m. A110, y+ =29.2

ln (kz
+)

2.0

1.0

y+ = 30

Ψ
u z

u z
 (

k z+
)

Ψ
u z

u z
 (

f+
)

–4 –2 0

ln ( f +)

0.20

–3 –1

0.15

0

(c) (d )

–5

0.10

0.3

0
–6–7

ln (kz
+)

0.05

Ψ
u r

u r
 (

k z+
)

Ψ
u r

u r
 (

f+
)

–4 –2 0

ln ( f +)

0.2

0.1

1.0

0.5

Figure 15. Power spectra at y+ ≈ 30: (a) axial component, VA models (DNS); (b) axial component,
measured with LDV; (c) radial component, VA models (DNS); (d) radial component, measured
with LDV.

7.1.7. Power spectra

One-dimensional power spectra have been computed at y+ = 12, 30 and 125.
These spectra, shown in figures 14–16 along with the LDV results, are plotted in the
format introduced by Perry & Abell (1975) that was also used in the experimental
paper of Wei & Willmarth (1992). The abscissa is the logarithm of the dimensionless
wavenumber in the z-direction, k+

z = kzν/uτ. The ordinate, Ψuαuα(k
+
z ), is defined so

that the area beneath a semi-logarithmic plot of Ψuαuα(k
+
z ) is proportional to the mean

square of the fluctuating signal, made dimensionless with uτ, i.e.∫
Ψuαuα(k

+
z )d(ln k+

z ) =
uαuα

u2
τ

. (7.8)

The relation between Ψuαuα(k
+
z ) and the standard one-dimensional spectrum, Φuαuα(k

+
z ),

is

Ψuαuα(k
+
z ) = k+

z Φuαuα(k
+
z ). (7.9)
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In the figures for the LDV measurements, we use the frequency f instead of the stream-
wise wavenumber kz . Hence, the abscissa is the logarithm of the non-dimensional
frequency, f+ = fν/u2

τ , and the ordinate is Ψuαuα(f
+). The area beneath the semi-

logarithmic plot of Ψuαuα(f
+) against f+ is again proportional to the mean square of

the fluctuating signal, made dimensionless with uτ.
Power spectra of the fluctuating uz- and ur-components at y+ = 12 are given

in figure 14. The spectrum of the axial component, given in figure 14(a), for the
anisotropic model shows a shift of the energy towards smaller wavenumbers in
comparison with the Newtonian results. This means that the energy at small scales
is decreased, while it is increased at large scales. The same is found in the LDV
measurements for the polymer solution, as can be seen in figure 14(b). In this figure,
the difference in noise levels, apparent from the value of Ψuzuz at high frequencies, is
different for the Newtonian data than for the polymer solution. The reason for this
remains unclear, and this effect is not found in the other spectra to be presented later.
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Figure 14(c) shows that the turbulent energy of the radial component is suppressed
over the entire wavenumber domain, and there is a small shift of the peak in the
spectrum towards smaller wavenumbers. The measurements show the same kind of
behaviour (see figure 14d), although the suppression of energy is more drastic, which
is related to the larger value of drag reduction in the measurements.

The spectra at y+ = 30 (figure 15) exhibit virtually the same characteristics as the
spectra at y+ = 12, only here the shift in turbulent energy from small to large scales
is even more pronounced. Again, in a qualitative sense the comparison with the LDV
measurements shown in figures 15(b) and 15(d) is good, except that the shift in the
radial spectrum of the measurements is not as large.

Finally, the spectra at y+ = 125 are shown in figure 16. The axial spectrum
of the DNS data is suppressed at high wavenumbers, and increased at the lowest
wavenumbers for VA model II, while for model I there is not much change at the
small wavenumbers. In the latter case the energy is only somewhat increased in
the energy-containing wavenumber region. In the computed radial spectrum (shown
in figure 16c) the VA model causes a shift to larger scales of the entire spectrum.
The LDV result for the axial spectrum, as shown in figure 16(b), shows reasonable
consistency with the computed behaviour although the shift is not as pronounced.
The measured radial power spectrum in figure 16(d) shows a decrease in energy at
small scales, but there is no clear shift.

7.1.8. Flow structures

Finally, we consider in more detail how the viscous anisotropic stress influences
the structure of turbulence in order to find an explanation for the drag-reducing
effect of the polymers. To quantify the changes in the turbulence structure, we use
the parameter R, introduced in den Toonder, Kuiken & Nieuwstadt (1996), which is
designed to characterize so-called strong flow regions in the turbulence. These are
regions in which large stretching (positive or negative) of material elements takes
place. The parameter, which is called the ‘elongation parameter’ R, is defined by

R = −3IIID
IID

, (7.10)
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R∗ 6 0; in the darkest area: R∗ > 50. (a) t∗ = 0 (Newtonian situation); (b) t∗ = 24.5 (VA model II).

where IID and IIID are the second and the third invariants of the rate-of strain tensor
D , respectively. It is shown in den Toonder et al. (1996) that in regions where R is
positive and large, there is a strong positive stretching deformation in the flow, whereas
in regions where R is negative and large, there is a strong negative stretching, i.e.
compression (or squeezing) deformation. Moreover, it is shown that regions with large
negative R values correspond to regions with large positive enstrophy production.
We note that in two dimensions better parameters than R have been proposed in the
literature, e.g. Lumley (1972), but in our three-dimensional case R is quite suitable.

In figure 17 we show the mean non-dimensional R∗ averaged over all positive
values (R∗pos, positive stretching) and over all negative values (R∗neg , compression).
From these results it can be seen how the deformation characteristics of the flow
are changed by our anisotropic VA model. We find that, in the mean, stretching as
well as compressing motion of the flow is suppressed by the VA model, but that the
suppression of the negative R is larger and extends over the whole flow. This implies
less enstrophy production in the anisotropic fluid. The peak of positive stretching is
displaced slightly wall-outward. These effects are larger for model II than for model
I.

Figures 18(a) and 18(b) show a cross-section of the pipe in which the instantaneous
values of R∗ are shown. Only regions with positive stretching are visualized. The
regions in which the largest stretching takes place are dark, and these are predom-
inantly situated in the near-wall buffer region. By comparing both figures, we may
conclude that the stretching structures are indeed somewhat suppressed by the VA
model.

Figures 19(a) and 19(b) are similar to figures 18(a) and 18(b), but here only negative
values of the elongation parameter R∗ are visualized, thus illustrating the regions with
the largest compression. Comparison of the two figures confirms that compression
is strongly suppressed by the anisotropic model. This is also clear from figures 20(a)
and 20(b) in which we also show a picture of the instantaneous negative values of R∗
but now in two cross-sections parallel to the flow.

As mentioned before, regions with large squeezing deformation are directly coupled
to enstrophy production. Hence, the observed change in the compression regions by
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the anisotropic model implies a change in the enstrophy generation. This is confirmed
by figure 21, which shows the average of the non-dimensional enstrophy production,
defined by

Pε = ω · D · ω, (7.11)

in which ω is the vorticity vector. The anisotropic model causes the value of P ∗ε to
decrease over the entire pipe cross-section and the decrease is largest in the case of
run II. The production of enstrophy is related to vortex stretching, and this process
plays a key role in the turbulent energy cascade which is an essential ingredient in the
dynamics of turbulent flow (e.g. Tennekes & Lumley 1972). The suppression of the
enstrophy production by the anisotropic model thus implies that the energy cascade
is hampered. This is consistent with the changes that we have observed in the power
spectra where we found a decrease of the small scales with respect to the large scales.

7.2. The viscoelastic anisotropic model (VEA)

In this section we present the results of the DNS of a turbulent pipe flow with the
viscoelastic anisotropic (VEA) model presented in §4. The results are compared with
the data obtained with model I of the viscous anisotropic (VA) model, which have
been discussed in the previous section, and also with the results obtained for the
Newtonian model by Eggels et al. (1994). In both the VA model I and the VEA
model, the parameter µ∗2 was set to 0.033.

7.2.1. Flow rate

The time evolution of the flow rate Q∗ is depicted in figure 22, where it should be
remembered that uτ is kept constant in the simulations. As both simulations were
initiated from a Newtonian fluid flow, Q∗ at t∗ = 0 corresponds to the flow rate of
the solvent. Figure 22 shows clearly that both anisotropic models result in a flow
enhancement, or equivalently, in drag reduction. The fluctuations in Q∗ visible in
figure 22 after t∗ = 10, are of a statistical nature as we will see later. The solid
line in figure 22 indicates the mean value of Q∗ in the case of the VA model I in
the time interval t∗ = 10 to 14, which, as we have seen before, is 12.1. The dashed
line indicates the same quantity for the VEA model, and it equals 11.7. As a result
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we find for the drag reduction defined by (6.2) the value of 4.1% for the viscous
case, as also obtained in the previous section, and only 0.7% for the viscoelastic
case. Our DNS thus suggests that to induce drag reduction anisotropic viscous
effects are more important than anisotropic elastic effects. Indeed, the extension of
the viscous anisotropic model with an elastic component reduces the drag-reducing
effectiveness considerably. Hence, the viscous anisotropic stresses introduced by the
polymer additives seem to be the key ingredient for polymeric drag reduction. This
important point will be returned to in our final discussion.

7.2.2. Mean velocity profile

Figure 23 shows the non-dimensional mean axial velocity profile. Both anisotropic
profiles follow the Newtonian data up to y+ = 5. In the region above y+ = 30,
the viscous profile is shifted upward with an almost parallel displacement, which, as
already mentioned in §7.1, is consistent with experimental observations of polymeric
drag reduction. The viscoelastic model shows an entirely different behaviour: the
profile is affected slightly only around y+ = 40 and remains unchanged with respect
to the Newtonian profile at other values of y+. This behaviour is clearly not in
agreement with experiments.

7.2.3. R.m.s. statistics

Figures 24(a), 24(b) and 24(c) show the profiles of the non-dimensional root-mean-
square (r.m.s.) values of the axial, radial and circumferential velocity fluctuations
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respectively. As can be seen in figure 24(a), the peak of the axial r.m.s. profile is
slightly shifted away from the wall to a higher y+ value, and the magnitude of the peak
is increased by both anisotropic models, although the effect for the viscoelastic model
is smaller. We have already mentioned in §7.1 that such behaviour is in accordance
with experimental data. However, it is clear that this behaviour is suppressed by
the elastic effect. In accordance with most experimental data, figure 24(b) shows
a decrease of the radial r.m.s. velocity along the entire pipe cross-section for both
models, with only slight differences between the two models. The peak of this profile
is also shifted away from the wall. The circumferential r.m.s. profile (figure 24c)
is decreased everywhere in the pipe with respect to the Newtonian value for both
models, as confirmed by measurements of Pinho & Whitelaw (1990). The peak of
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this profile, however, is shifted towards the wall by the viscoelastic model, while it is
shifted away from the wall by the viscous model.

In general, we see that the r.m.s. profiles for the VA model and the VEA model
give the same qualitative behaviour, although the change in the axial r.m.s. is weaker
for the VEA model.

7.2.4. Other statistics for the VEA model

In this subsection we summarize the changes in turbulence statistics that we have
obtained for the VEA model, other than the mean and the r.m.s.

First, there is not much difference between the VEA model and the VA model I
for the skewness and the flatness factors. In any case the small differences observed
between the results obtained with both models are not systematic.

Like the VA model I, the VEA model does not generate a Reynolds stress deficit,
while the total shear stress follows the linear profile dictated by the shear stress
balance (7.6). The latter is an indication that the simulation has reached a steady
state at t∗ = 10.

With respect to the individual components of the polymeric stress tensor for the
VEA model, we have found the same kind of behaviour as for the VA models presented
in §7.1. The zz component of the polymeric stress makes the largest contribution,
while the other components are quite small over the entire pipe cross-section.

The influence of the VEA model on the turbulent energy production and the
enstrophy generation is similar to the influence of the VA models shown in figures 13
and 21, respectively, but the changes caused by the VEA model are weaker.

7.2.5. Significance of elasticity

Finally, we consider to what extent the elasticity has played a role in our DNS
with the VEA model as compared to purely viscous anisotropic contributions to the
stress. To this end, we display in figure 25 the average of the absolute values of the
terms in equation (5.5) for F∗, computed from the simulated data with µ∗2 = 0.033
and λ∗ = 0.02. It can be seen that the elastic and the viscous terms are of comparable
order of magnitude, the elastic contribution being somewhat smaller. Hence, it may
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be concluded that the choice of the values for the material constants has resulted in
truly overall viscoelastic behaviour, and that the process has not been dominated by
either viscous or elastic effects. Therefore, the comments made above with respect to
the effect of elasticity on drag reduction seem justified.

8. Conclusions and discussion
Our DNS results support the hypothesis that the key property for drag reduction

by polymer additives is related to a purely viscous anisotropic stress introduced
by extended polymers. Furthermore, the results suggest that elastic behaviour only
reduces the drag-reducing effectiveness. This is in our opinion the main conclusion to
be drawn from the present investigation.

Let us also summarize the main points of our study. We have conducted a DNS
of turbulent pipe flow in which the effect of polymer additives has been modelled
with a simplified constitutive equation which introduces a viscous anisotropic stress.
The model, in which the polymers are represented as elongated particles aligned
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with the instantaneous flow vector, should be considered as a simplification, made
necessary by computational restrictions. Although in particular our approximation
of the particles locally aligned with the flow is strictly not correct in an unsteady
flow like turbulence, it seems to be a reasonable first approximation, and thus in
our opinion the model captures the essence of viscous anisotropic effects presumably
introduced by elongated polymers. The DNS showed a significant drag reduction,
which became larger with increase of the non-Newtonian parameter in the model.
Based on the computational results we have noticed the following changes between
Newtonian and drag-reduced flow.

The buffer layer is thickened for the drag-reduced flow and the logarithmic region
has a corresponding offset. The peak of the axial r.m.s. profile is increased and shifted
away from the wall, while in the other directions the r.m.s. velocity is decreased. All
changes in the higher-order moments are rather small. There is no clear evidence of
a Reynolds stress deficit in the DNS. The changes caused by the viscous anisotropic
model seem to be mainly due to an additional normal stress in the axial direction. The
turbulent energy of the axial velocity is redistributed from small scales to large scales.
This change, which shows up in the power spectrum, is largest in the buffer region.
The energy of the radial velocity fluctuations is damped over the entire wavenumber
domain close to the wall, and the power spectra of this component show a slight shift
toward low wavenumbers. It has also been shown that the stretching characteristics of
the flow are changed by the viscous anisotropic model, i.e. positive as well as negative
stretching deformations are suppressed. Negative stretching, which corresponds to
positive enstrophy production, is suppressed more strongly than positive stretching.

Almost all these changes have been confirmed (at least qualitatively) by the results
of LDV experiments in a turbulent pipe flow of a dilute polymer solution, which we
have also presented in this paper. The exception is the clear Reynolds stress deficit
that we find in the measurements and which is lacking in the DNS. This difference
probably is due to the small value of the non-Newtonian parameter in our viscous
anisotropic model.

To test the hypothesis of de Gennes (1990) that the polymer effects could be
described by an elastic modulus and not by a viscosity, and that therefore elasticity is
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the key property for drag reduction, we performed another DNS using an anisotropic
Maxwell model that can be interpreted as the extension of the viscous anisotropic
model with an elastic component. The numerical simulation with this extended
anisotropic model showed considerably less drag reduction than the original viscous
model.

The mean velocity profile obtained with the viscoelastic model is not in accordance
with experimental results: it shows a slight increase in mean velocity only in the
region around y+ = 40. The r.m.s. profiles of the viscoelastic model show the correct
tendencies, although the changes caused by the viscoelastic model are smaller than
those caused by the viscous anisotropic model. The same applies to the higher-order
turbulence statistics and the stresses generated by the viscoelastic anisotropic model.
However, the most important conclusion to be drawn from our viscoelastic simulation
is that elasticity has an adverse effect on polymeric drag reduction when added to a
viscous anisotropic fluid.

Indirect support for our main conclusion, stated in the first paragraph of this
section, is the fact that other particles, such as fibres and surfactants, which also
lead to drag reduction although less effectively than polymers, have in common with
extended polymers that their shape is rod-like. This rod-like shape causes the relation
between the deformation and the stresses in the flow to become anisotropic. In this
respect, one may ask why fibres are not the best drag reducers, since these have,
according to our conclusion, the required property. The answer in our opinion is that
a polymer, stretched out by the flow, might be viewed as the ultimate fibre, since
its aspect ratio can become much larger than that of a regular fibre. As a result
polymers may be more effective than fibres in causing changes in the fluid stresses.

Our conclusion confirms the idea of Lumley (1969) that polymer stretching plays
a key role in polymer drag reduction although not with the effect of increasing
the viscosity as supposed by Lumley. The main result of our study supports, more
specifically, the work of Landahl (1973), who arrived at a similar conclusion as ours
after an investigation of the influence of different constitutive models on the stability
of a conceptually simple turbulent flow model. Our results are also consistent with
the findings of Sasaki (1991a, b, 1992), who arrived at essentially the same conclusions
on the basis of gross-flow measurements of various polymer solutions. The ideas of
de Gennes (1990), who attributes the effects of the polymers to an elastic modulus
and not to a viscous mechanism, are not confirmed by our numerical experiments.
However, we must note that our viscoelastic anisotropic model does not have an
elastic modulus for shear, and hence is unable to support shear waves. The model
only shows elastic effects in flow deformations with an extensional component. To
investigate the effect of shear waves, a more complicated model is needed.

Some other evidence in support of our results is a recent computational study
by Hinch (1994) who suggests that viscous effects may dominate elastic effects in
extensional flows of dilute polymer solutions in general. This would indicate that our
viscoelastic anisotropic model, even though it is simple, actually captures the most
essential feature of a dilute polymer solution, at least in extensional flows.

Orlandi (1995) recently performed a direct numerical simulation in a so-called
‘minimal channel’, and obtained a drag reduction using a simple non-Newtonian fluid
model. The constitutive equation used by Orlandi also contains anisotropic effects.
Hence, Orlandi’s results are compatible with our conclusions. However, Orlandi’s
model contains various mixed effects, and therefore he was not able to assess the
influence of the anisotropy separately and draw the specific conclusions that we do.

A fact that remains unclear is how the existence of an onset Reynolds number can



Drag reduction by polymer additives 229

be explained in terms of our viscous anisotropic model. It seems that such an onset
criterion does not exist for our model, because the polymeric part of the equations
will start to contribute to the physical process as soon as the flow becomes turbulent.
This is consistent with the measurements by Virk & Wagger (1990) of dilute solutions
of extended polymers. For randomly coiled polymers, however, an onset Reynolds
number does indeed exist. This is another indication that the polymers must be
extended for drag reduction. In that case the onset criterion determines when the
polymers actually become extended by the flow. As proposed by Lumley (1973), and
later confirmed by Berman & George (1974), this extension and hence the onset of
drag reduction occurs when the ratio of turbulence and polymer time scales is of
order one. This also means that polymers that already are extended by some other
cause, for instance a chemical one, give drag reduction as soon as the flow becomes
turbulent, as observed by Virk & Wagger (1990).

Finally, on the basis of our results and the preceding discussion, we propose the
following mechanism for drag reduction by polymer additives. The polymers become
extended by the flow at a certain Reynolds number, depending on the time scale
of the polymer molecules in relation to the time scale of the turbulence. Hence,
this ‘onset’ phenomenon is determined by the elastic properties of the fluid. When
the polymers are extended, viscous anisotropic effects introduced by the extended
polymers in the relation between the stress and the deformation cause a change in
turbulence structure and the enstrophy production leading to a reduction in drag.
At this stage, elasticity seems to play a counterproductive role in the drag reduction
process.

At this stage our proposed mechanism of drag reduction can be only taken as a
plausible but tentative explanation using the evidence that we have offered, but more
information is needed. For instance, the mechanism of the onset of drag reduction as
proposed here should be investigated. In addition more elaborate studies using more
realistic constitutive models should be considered in future studies, when the advance
in computer technology has relaxed computational restrictions. Possible candidates
for such a studies are for example the full model proposed by Hinch (1994) or
molecular polymer models.
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